Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Diaquabis(4,4'-bipyridine)zinc bis(2,4,6-trinitrophenolate) dihydrate

Seik Weng Ng

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.057$
$w R$ factor $=0.152$
Data-to-parameter ratio $=13.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The space group of the title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, reported as Cc [Liang et al. (2001). Chin. J. Inorg. Chem. 17, 699-703], is revised to C2/c. In the revised description, the Zn atom lies on a special position of 2 symmetry (Wyckoff $2 e$); one $4,4^{\prime}$-bipyridine entity also lies on a twofold axis that passes through the two N atoms, whereas the other $4,4^{\prime}$-bipyridine entity lies on an inversion center (Wyckoff $4 a$) that lies midway between the 4and $4^{\prime}-\mathrm{C}$ atoms.

Comment

The reaction of zinc dipicrate octahydrate with 4,4'-bipyridine gives bis(4,4'-bipyridine)diaquazinc dipicrate (Liang et al., 2000) as a dihydrate (Liang et al., 2001b), (I), as well as a monohydrated co-crystal with 4,4'-bipyridine (Liang et al., $2001 a$). The crystal structures of both were refined in the space group $C c$; that of the dihydrate was refined to 0.087 for reflections with $2584 I>\sigma(I)$. However, the published packing diagram shows a centrosymmetric arrangement of the contents. In the revised $C 2 / c$ setting, the structure refined to 0.057, but some retraints had to be imposed on the model (Fig. 1). In the revised description, the Zn atom lies on a twofold axis as does one of the two 4,4-bipyridine units. This axis passes through the two N atoms. The other spacer unit lies on an inversion center that is mid-way between the 4 - and 4^{\prime}-C atoms. Arising from the revision, the 4,4'-bipyridine-zinc layer motif is better regarded as an almost perfect square. One side is equal in length to the b-axial distance, whereas the other is half the c axis, as seen from the axial ratio $(11.418 \AA / 22.908 \AA)$ which is nearly $1 / 2$.

Received 30 May 2003
Accepted 9 June 2003
Online 17 June 2003

(I)

Experimental

The reaction of zinc dipicrate octahydrate with 4,4'-bipyridine gives bis(4,4'-bipyridine)diaquazinc dipicrate (Liang et al., 2000) as a dihydrate (Liang et al., 2001b), as well as a monohydrated co-crystal with 4,4'-bipyridine (Liang et al., 2001a).

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]-$
$\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=906.01$
Monoclinic, $C 2 / c$
$a=14.391$ (2) Å
$b=11.418$ (1) \AA
$c=22.908$ (3) \AA
$\beta=95.08$ (1) ${ }^{\circ}$
$V=3749.4(8) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4
diffractometer
ω scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.874, T_{\text {max }}=0.914$
3829 measured reflections
3679 independent reflections
2020 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.152$
$S=1.01$
3679 reflections
278 parameters
H atoms treated by a mixture of independent and constrained refinement

The aromatic H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=$ $0.93 \AA$) in a riding-model approximation, and were assigned displacement parameters 1.2 times those of their parent C atoms. The water H atoms were located and refined, subject to $\mathrm{O}-\mathrm{H}=$ 0.85 (1) \AA and $\mathrm{H} \cdots \mathrm{H}=1.39$ (1) \AA; the displacement parameters were similarly assigned. The aromatic ring of the anion was refined as a rigid hexagon ($\mathrm{C}-\mathrm{C}=1.39 \AA$); the three $\mathrm{C}-\mathrm{N}$ distances were restrained to be approximately equal within $0.01 \AA$, as were the six $\mathrm{N}-\mathrm{O}$ distances.

Data collection: CAD-4 Software (Enraf-Nonius, 1988); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figure 1
ORTEPII (Johnson, 1976) plot of a portion of the crystal structure of (I), with displacement ellipsoids drawn at the 50% probability level.

The author thanks Professor Zhao Hui Zhou of Xiamen University for the diffraction data, and the University of Malaya for supporting this research.

References

Enraf-Nonius (1988). CAD-4 VAX/PC Fortran System. Enraf-Nonius Delft, Scientific Instruments Division, Delft, The Netherlands.
Harms, K. (1997). XCAD4. University of Marburg, Germany.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Liang, F. P., Chen, Z. L., Hu, R. X., Liang, H., Yu, K. B. \& Zhou, Z. H. (2000). Chin. Chem. Lett. 11, 367-372.
Liang, F. P., Chen, Z. L., Hu, R. X., Liang, H., Yu, K. B. \& Zhou, Z. H. (2001a). Acta Chim. Sin. 59, 405-412.
Liang, F. P., Chen, Z. L., Hu, R. X., Liang, H., Yu, K. B. \& Zhou, Z. H. (2001b). Chin. J. Inorg. Chem. 17, 699-703.
North, A. C. T., Philips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351539.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

